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Abstract— Efficient use of network resources has long been
an important problem for large-scale network operators. To this
end, several recent research efforts have proposed automated
methods for optimizing routes based on traffic measurements.
However, these efforts have not considered the stability of the dual
feedback control mechanisms of adaptive routing and congestion
control, when operating together. In this paper, we demonstrate
that an important class of adaptive routing algorithms can yield
stable optimal routes in the presence of congestion control,
provided that either the congestion control mechanism is fair
or the network workload behaves under reasonable constraints.
We further show that one or the other of these assumptions
is necessary for this class of adaptive routing algorithms –
otherwise, unstable, sub-optimal routes may result in some
pathological cases.

I. INTRODUCTION

Efficient use of network resources has long been an impor-
tant problem for large-scale network operators. By exploiting
redundant paths in response to changing workload conditions
and router/link failures, adaptive routing has the potential for
significantly improving network performance. Although some
believe that adaptive routing is unnecessary, arguing that many
networks are under-loaded by design, a recent study at a major
service provider showed spikes of over 90% load on some
links over periods of many minutes and spikes over 50% load
over periods of hours [1].

As a result, automated mechanisms for adaptive routing
have attracted significant research attention over the last thirty
years, resulting in substantial progress in theory [2], [3], [4],
more practical systems [5], [6], [7], and techniques for adding
adaptive routing to existing routing protocols [8], [9], [10].
Despite this, there has been little progress towards the de-
ployment of adaptive routing in operational networks; instead,
large networks typically rely on human traffic engineers to
optimize their systems. In part, this lack of progress is due to
a well-founded fear among network operators that automated
adaptive routing will be unstable in practice, yielding both
sub-optimal performance and poor reliability due to routing
oscillations. In fact, early experience with adaptive routing in
the ARPAnet showed exactly these effects [5].

In this paper, we focus on a specific sub-problem in this
area: whether adaptive routing algorithms can be designed to
be stable in the presence of congestion control. By stability
we mean the notion – made precise in section II below –
that the repeated operation of the adaptive algorithm quickly

converges to a good solution, from which the system will not
substantially vary except as traffic changes. This is an inter-
esting question due to the interaction between the feedback
control mechanisms of adaptive routing (adjusting routes in
response to changes in traffic load) and congestion control
(adjusting the traffic load in response to changes in network
capacity, i.e., routes). With congestion control, an inefficient
initial routing configuration can become self-confirming, as
the routing mechanism sees only the traffic that the congestion
control algorithm allows into the network. In fact, we show
by proof and counterexample that some adaptive routing
mechanisms are stable and optimal when combined with fair
congestion control mechanisms, but are potentially unstable
and/or reach sub-optimal solutions when combined with other
less friendly congestion mechanisms.

Earlier work on adaptive routing has sidestepped this issue
by assuming that the workload is “quasi-static” – inelastic to
routing changes and measured over a long enough interval
(e.g., a day) so that all pent-up demand can be met by the
network. By contrast, we are interested in the limits of routing
adaptation to short term events, such as link failures and
temporary increases in load. Over shorter time scales, host
congestion control can significantly reduce measured load,
and user studies have shown that web surfing declines when
the network is slow [11]. To a network operator charging
for bandwidth use, this reduction in demand represents a lost
opportunity for revenue.

We restrict the class of algorithms under consideration in
two significant ways to make our analysis more tractable.
First, we assume that the adaptive routing algorithm uses as
input a point-to-point traffic matrix measured at the network
edge, instead of interior measurements of link utilization.
Traditional adaptive routing systems such as ARPAnet [5] have
been based on interior link utilizations, as these are easier to
measure. However, such systems are inherently less stable and
take longer to converge than systems based on measurements
of a traffic matrix, since routing changes can directly affect
link utilizations, and link utilizations directly affect routing
decisions. Gallager was able to design a “stable” adaptive
routing algorithm based on link utilizations, but his analysis
assumes infinite queues inside the network and no congestion
control [12]. We could find no obvious way to extend the
proofs presented in this paper to Gallager’s algorithm.

By contrast, a traffic matrix provides the measured demand



from every point in the network to every other point; in the
absence of congestion control, this can be used to compute
optimal routes using linear or non-linear optimization algo-
rithms [13], [14]. Further, it is not unreasonable to assume the
availability of this information, at least for optimizing routes
within a single service provider [15]. Although many legacy
pieces of network equipment lack the capability to collect and
report this information, most new routers from Cisco [16],
Juniper [17], and Foundry [18] have added this capability, and
over the long term, we expect this support to become standard.

Second, we restrict our discussion to the class of adaptive
routing algorithms that have the property of minimizing the
maximum utilization across any link in the network (the so-
called “min-max” property) [13]. This class of algorithms
includes not only the simple min-max algorithm using a
linear constraint solver, but also other solutions that optimize
routes through the network without affecting the min-max
property. As just one example, the authors have developed an
adaptive routing algorithm that optimizes for path length while
preserving min-max; this algorithm is as efficient as shortest
path under low to moderate load, and as efficient as min-max
when the network becomes congested [19]. As we discuss in
more detail in Section IV, there are often multiple solutions
that preserve the min-max property; to avoid useless route
flapping, we restrict ourselves to those min-max algorithms
that contain systematic tie-breaking rules.

Of course, adaptive routing algorithms that preserve min-
max are not the only ones worth consideration; for example,
some algorithms attempt to minimize average link utilization
or minimize average queueing delay. Our proof techniques,
however, do not extend to these other criteria, unless the
algorithm also preserves the min-max property. Finally, we
note that our work is somewhat, but not completely, indepen-
dent of the mechanism used to implement adaptive routes.
Both source routing, as in MPLS [20], [21], and destination-
based fractional routing [22] are general-purpose enough to
be able to implement the min-max property for all networks
and workloads. However, many service providers instead use
OSPF or IS-IS shortest path algorithms for computing routes,
adjusting weights on each link to achieve traffic engineering
objectives. As recent work has shown, computing a set of
link weights to optimize for min-max, or even approximating
min-max to within a constant factor, is NP-hard for gen-
eral networks [8]. Thus our work does not extend, at least
efficiently, to link weight setting algorithms, despite their
attractiveness as a transition path to deploy adaptive routing
on legacy systems. A full discussion of the practicality of
implementing min-max based adaptive routing is beyond the
scope of this paper; in the associated thesis, we show that min-
max based routing can be implemented efficiently, reliably, and
with substantial performance gains relative to load-insensitive
routing for typical network topologies and workloads [19].

The key insight for our work is that routing algorithms that
preserve the min-max property (henceforth referred to as “min-
max” for notational convenience) leave the maximum head-
room for congestion control to expand into newly improved

routes, thus avoiding the self-confirming property of poorly
chosen routes. Our results show that the following hold in the
presence of congestion control, provided that the workload can
be feasibly routed:

1) If the current routing configuration is nearly optimal,
min-max algorithms converge immediately to the opti-
mal configuration.

2) If the congestion control algorithm is fair, min-max
algorithms converge to an optimal, stable solution from
any initial configuration, regardless of congestion.

3) Given weak assumptions about the congestion control
algorithm, min-max algorithms converge under condi-
tions of reasonable network congestion.

Further, we show by counterexample the converse – that
min-max algorithms do not achieve optimal performance in the
presence of congestion control without either the assumption
of fair congestion control or limited workloads.

The rest of the paper presents our results in more detail.
We first define the problem more formally in Section II. We
then present our principal results in Section III. In Section IV,
we consider how to resolve route oscillation for networks
where min-max does not specify a unique solution. Finally,
in Section V, we summarize our findings.

II. PROBLEM DEFINITION

Broadly, in this work we consider traffic-aware adaptive
routing algorithms that (after initialization) perform the fol-
lowing three steps:

1) Measure some properties of the network, such as traffic
flow or link utilization.

2) Compute a set of routing tables, based on the measured
properties and the current system state.

3) Operate the network under the given set of routing
tables.

In principle, the process can be repeated ad infinitum.

A. An example of undesirable behavior

Consider the example network displayed in Figure 1. This
example is loosely based on the transcontinental network in
the early ARPAnet [5]. In the Figure, all traffic moves from
left to right, and all links have capacity equal to one unit of
traffic per period.

Suppose the network is initialized with simple shortest-path
routing tables, and suppose weights are assigned to each link
according to the following rule:

• less than 40% utilization, w = 1
• between 40% and 60% utilization, w = 2
• over 60% utilization, w = 3

Suppose further that the four nodes A,B,C, and D each
originate one-quarter unit of traffic per period, all destined
for node Z. All links in the network, except perhaps links
Lupper, Llower and E → G, will have utilization of less than
40% throughout, and hence for these links w = 1 throughout
the operation of the algorithm. Initially, the shortest-path
routing sends three quarter-units of traffic (from A,B,C)



A

Z

B

C

D

E

L  lower

L  upper

F

G

Fig. 1. An example of an oscillating network. Each of the four nodes on
the left sends an equal amount of traffic to the node on the right. The weight
assigned to the upper and lower links is equal to the number of flows that
traverse that link. The network is initialized with shortest path routing. The
result is oscillation.

through Lupper and one quarter-unit through Llower. Then, the
algorithm assigns weights of w = 3 and w = 1 respectively
to those links for use in the subsequent routing calculation. In
the second step, the paths to the destination Z are recomputed.
The new weighted shortest path routing leaves the traffic
originating at A and at D unchanged, but sends traffic from
nodes B,C through Llower instead of through Lupper. Based
on that new routing, utilization of the links Lupper and Llower

changes. Then, weights are recomputed to be w = 1 for
Lupper, w = 2 for the link from E to G, and w = 3 for
Llower. The paths computed using these weights are identical
to the original routing; thereafter, the system oscillates. In each
configuration, there is congestion on either the upper link or
the lower.

A routing with less congestion can be obtained by routing
half the traffic through the upper link and half through the
lower. This routing can be achieved through link weights, for
example, by changing the weight on the links joining B to
node E and C to node F to w = 3. In that case, the traffic
sourced at A,B is routed through Lupper while that at C,D
through Llower. In general, as we see in this example, the
best set of link weights for a given traffic pattern may require
changes to weights on links that themselves experience no
congestion.

These problems are not just theoretical; the adaptive routing
scheme used in the early ARPAnet exhibited route instability
in practice [5], [2]. Contributing to the instability were several
factors, including the use of instantaneous queue length (itself
rapidly varying) as a measure of utilization, and a topology
that relied on two transcontinental links (loosely modeled in
Figure 1 above). The observed instability was significantly
reduced in later versions of the adaptive routing algorithm,
through the use of damping (or hysteresis) and thresholding.
However, damping reflects a direct tradeoff between stability
on the one hand and responsiveness, the system’s ability to
react to changed circumstances, on the other [2]. The tuning
of these parameters was both delicate and specific to the
topology. The ARPAnet designers summed up their experience
as follows [5]:

These [parameter] values ... are not necessarily ap-
propriate for all network topologies.

Subsequent research confirmed that stability is a significant
issue with link utilization based schemes [9].

B. A definition of stability

We identify four distinct (but related) desirable properties
of a “stable” adaptive system:

1) The system should converge to some state: over time, if
the input does not change or makes only small changes,
the system behavior should not exhibit large fluctuations.

2) The state the system converges to should be “near-
optimal”, achieving a routing that produces good overall
system performance.

3) The system should not exhibit “route oscillation”, i.e.,
not only broader system behavior but the routing tables
themselves should converge.

4) These properties should hold independent of the network
topology.

Note that stability and convergence without optimality is
trivial – static routing along the shortest number of hops is
stable and converges quickly, but it does not always yield
an efficient solution for various workloads and topologies.
Among adaptive routing systems, the experience of link weight
schemes indicates that link utilization based routing does not
always exhibit favorable stability properties. We show in the
next section that min-max adaptive routing algorithms, by
contrast, do have favorable stability properties.

III. CONVERGENCE

In this section, we develop a formal model for analyzing
the stability of adaptive routing systems that operate in the
context of congestion control. The adaptive routing systems we
discuss here take as input measured point-to-point traffic. This
measured traffic can be seen as an estimate of some underlying
“true demand”. To analyze convergence, we make the formal
assumption that this “true demand” is fixed. Then we can
identify an optimal routing as the routing produced by the
min-max algorithm when presented with this “true demand”.
We measure the performance of an algorithm by comparing
its routing to this optimal routing.

Initially, we we will assume that under the optimal routing
the “true demand” can be feasibly routed, at least when
the entire measurement interval is considered. We remove
this assumption in Section III-I. Even with this assumption,
however, given an arbitrary starting point, there may be
congestion. If the workload rapidly changes, for example,
the previous routing may be ill-adapted to the new demand.
In this event, congestion control mechanisms will inhibit the
observed traffic, and measured traffic may fall short of the
true demand. The adaptive routing system will be presented
with this measured traffic, and under repeated application of
the cycle of routing and measurement will attempt to improve
network performance. In general, therefore, we must determine
whether and how quickly a min-max algorithm adapts to
congestion from an initial sub-optimal routing.

In practice, observed traffic may fail to equal “true demand”
for any of several reasons. In addition to congestion control,



these include router buffering, link errors, stochastic fluctua-
tions, and users reducing their demand when faced with a slow
network. We restrict our formal model and our analysis to the
effect of congestion control.

A. Definition of the model

We formally define a model for an adaptive routing system
as follows. Consider a routing network G = (V,E, T ) of
nodes i, j, k ∈ V , capacitated edges e ∈ E each with capacity
c(e), and routing tables1 T

def= {φij(k)}, where φij(k) denotes
the proportion of traffic leaving node i destined for j that is
assigned to the link i → k. By definition, the proportions
across all outgoing links must add to one, i.e., we have

∀i, j,
∑

k∈V

φij(k) = 1.

We identify three demand quantities:
• dij , the true demands, which for our purposes are prede-

fined constants of the system;
• rij , the reference demands, used by the min-max algo-

rithm to compute the routing tables T ; and
• mij , the measured traffic, which are the result of applying
dij to the network G = (V,E, T ).

We suppose that the application of the true demands to the
network G (including its routing tables) results in a measured
flow fm = fm(P ) along each path P , whose point-to-point
path flows2 sum to the measured traffic mij :

∑

P :i→j

fm(P ) = mij (1)

The measured traffic is used at the subsequent step as input
to the min-max algorithm, i.e., as reference demands used
to compute routing tables. Formally, the min-max algorithm
computes a complete reference flow fr(P ):

∑

P :i→j

fr(P ) = r
(n+1)
ij = m

(n)
ij (2)

The iterative operation of the adaptive scheme can be de-
scribed schematically as follows:

m
(0)
ij

(A)→ r
(1)
ij

(B)→ m
(1)
ij

(A)→ r
(2)
ij

(B)→ m
(2)
ij → ...

Step A consists of equating the reference demands to the
measured traffic of the preceding step, and computing a
reference flow via the min-max algorithm. Step B consists of
applying the true demands dij to the network whose routing
tables T are derived from the reference flow.

The challenge, then, is to determine whether this process
converges to the optimal routing, regardless of the topology
and regardless of the starting point for m(0)

ij . If so, then we
call the adaptive routing system stable.

1For convenience, we refer to “routing tables” here as the formal analogue
of “forwarding tables” used in network terminology.

2We use the term “flow” in the multicommodity flow sense of the aggregate
traffic along a path, rather than an individually identified transaction such as
a TCP connection. Where necessary we use “TCP flow” to denote the latter.
Formally, a flow is the amount of traffic from any input to any other output
along a single path in the network.

B. Useful definitions

In this subsection, we introduce the definitions of unre-
stricted flow, a network’s margin of support for demands, and
an optimal network Gopt.

Definition 1: The unrestricted flow fu, defined with respect
to a particular set of demands d and routing tables T , is the
flow computed by assigning to each source node the demands
dij and applying at each node the proportions given by T ,
without regard to capacity constraints in the network G. In
particular, fu may not be a feasible flow in the sense of a
multicommodity flow formulation.

Whenever a reference flow determines the routing tables,
the unrestricted flow along each path P : i → j is simply
the reference flow along P increased by the ratio of true to
reference demands between the endpoints, or dij/rij .

Suppose the unrestricted flow fu with respect to a particular
set of demands dij , taken as a whole, presents no congestion.

Definition 2: If for all edges e the unrestricted flow fu

satisfies ∑

P :e∈P

fu(P ) < (1 − ε)c(e) < c(e),

then we say that G supports the demands d with margin ε.
If the unrestricted flow with respect to a particular set of

demands is feasible, but not necessarily bounded away from
full utilization by ε, we say instead that the demands can be
routed:

Definition 3: If for the unrestricted flow fu
∑

j

fu(P ) ≤ c(e),

then G can route the demands d.
Finally, we denote by Gopt the network G with routing

tables obtained by applying the min-max algorithm to the true
demands d. Because min-max minimizes worst-case utiliza-
tion, it produces a routing with the best possible ε. Thus we
have the following characterization of min-max:

Proposition 1: If the network G supports a particular set of
true demands dij with margin ε, then the network Gopt also
supports dij with margin ε.

Proof: Gopt is G with tables produced by the min-max
algorithm. The result is immediate from the definition.

C. Assumptions about congestion behavior

In this subsection, we identify three basic assumptions
about the system behavior under congestion. We believe
these assumptions are reasonable and natural properties of
congestion-controlled networks, especially for Internet routing.
Using these assumptions, we prove convergence under many
conditions. Later, by making more specific assumptions about
the congestion control mechanism, and particularly about its
fairness, we demonstrate a stronger conclusion about conver-
gence of min-max algorithms.

Specifically, we want to identify how the system determines
the measured traffic m for a given combination of routing
tables T and true demands d, and especially how congestion
control arbitrates among flows through network bottlenecks.



Formally, we define a bottleneck edge as an edge for which
total flow along the edge equals its capacity.

We make the following three general assumptions about the
behavior of any congestion-controlled system under conditions
of significant network load:

Assumption 1: The measured flow fm(P ) is
uniquely defined by the network G = V,E, T and
the input demands d.

Assumption 2: On any path P , the measured flow
does not exceed the unrestricted flow, fm(P ) ≤
fu(P ). That is, congestion control serves only to
slow down the rate of traffic relative to the true
demands.

Assumption 3: On any path P , if the path contains
no bottleneck edge, then the measured flow is the
unrestricted flow, fm(P ) = fu(P ). That is, unless
there is congestion along a path, the network admits
the entire flow along that path based on the true
demands.

The first assumption formally requires that measured traffic
at any point does not exhibit hysteresis (dependence on the
existing flow). In practice, even where a congestion con-
trol mechanism offers statistical fairness, a particular newly-
introduced connection may not achieve its bandwidth share
instantaneously. Our assumption here ignores these time-
dependent effects.

The second assumption implies that the true demands are the
limit of what end hosts want to send through the network (or
are permitted to send across rate-limited access links) during
the measurement interval. Applying congestion control does
not cause these true demands to increase.

The third assumption is valid when congestion control is
applied path by path, affecting only flows through a bottleneck
link and, indirectly, bottleneck links upstream and downstream
of that link. This model is reasonable where each individual
connection (TCP or UDP flow) follows a unique path to
its destination. Most multipath routing systems attempt to
preserve single path routing for individual connections [22]. If
a single TCP flow is split among multiple paths transparently
to the end host, however, TCP congestion control feedback
may generalize from loss on one path to reduce flow along all
paths in aggregate. In this case Assumption 3 is not strictly
valid. However, we expect that this assumption is broadly and
substantially correct, at least on average [23].

Note that these three assumptions do not address how
bandwidth is allocated among competing flows through a
bottleneck link, i.e., the fairness of the congestion control
mechanism. We defer a discussion of the role of fairness in
the stability of adaptive routing to Section III-H.

These assumptions have one straightforward but important
immediate consequence for min-max algorithms. Because a
min-max algorithm produces a linear solution to a linear
program, the routing solution based on measured traffic is
always no worse – in the sense of worst-case link utilization
– than the optimal solution based on true demands:

Proposition 2: Suppose the network G supports a particular
set of true demands dij with margin ε. Then any solution
produced by a min-max algorithm based on any measured
traffic mij supports that measured traffic with margin ε.
Specifically, that solution’s reference flow fr on any edge e is
strictly less than its capacity by the margin ε,

∑

P :e∈P

fr(P ) ≤ (1 − ε)c(e)

Proof: From Proposition 1, the solution Gopt produced
by min-max on true demands dij has margin ε. By As-
sumption 2, the measured demands mij do not exceed the
true demands. Since min-max optimizes for link utilization,
the routing obtained by min-max for the measured demands,
described by the reference flow fr, cannot have a worst-case
utilization greater than margin ε. For Gopt is one such routing,
with a worst-case utilization when restricted to the measured
demands of no worse than margin ε, and min-max optimizes
over all such.

D. Immediate convergence for near-optimal starting condi-
tions

Our first major result is that min-max will often converge
to an optimal solution immediately.

Proposition 3: Suppose the network G supports the true
demands dij with margin ε. If at any step the measured traffic
m

(n)
ij is within ε of the true demands,

∀i, j, m(n)
ij ≥ (1 − ε)dij ,

then min-max converges to the optimal solution in at most two
steps.

Proof: Because the measured traffic m(n)
ij ≤ dij , the

solution computed by min-max at step n + 1 (using m(n) =
r(n+1) as input) supports the reference demands with margin
ε (Proposition 2). If the measured traffic is within ε of the
true demands, then the unrestricted flow fu is not more than
1/(1−ε) times the reference flow. Hence the unrestricted flow
never encounters a bottleneck. In this case by Assumption
3 the measured flow fm(P ) = fu(P ) on all paths. Thus
the traffic measured at the next step is the true demand,
m(n+1) = dij . Then at step n + 2 min-max takes the true
traffic as input and computes an optimal solution. Because the
optimal routing supports the true demands, at every succeeding
step the measured traffic is again equal to the true demands.

We reiterate that this is the common case in practice.
Unless a network is seriously overloaded, or the initial routing
is particularly inefficient, the congestion encountered should
not affect the measured traffic so severely as to distort the
routing beyond that required by Proposition 3. This stability
property is fundamentally stronger than for link utilization
based schemes, where even if utilization is well below link
capacity, the routing could develop oscillations and fluctuate
without converging. (See Figure 1 and accompanying text.)

Of course, we would like to be able to show convergence
regardless of topology or offered load. While we can’t show



this in the general case for min-max algorithms, we can
demonstrate convergence under more severe workload con-
ditions than assumed in Proposition 3. However, the stronger
results are not as straightforward, as the next example shows.

E. An example of a non-monotonic network

It would be straightforward to prove convergence if total
network flow increased at every iteration. However, this is not
always the case when there are multiple bottlenecks per path,
as we show in this subsection.

First we begin with a definition of the notion of monotonic
increase of flow.

Definition 4: A network is monotonic at step n if either the
measured traffic m(n)

ij is within ε of the true demands, or is in

aggregate greater than the reference demands r(n)
ij by at least

an amount εCmin, for some constant Cmin of the network:3
∑

i,j

m
(n)
ij −

∑

i,j

r
(n)
ij ≥ εCmin

Definition 5: A network is always monotonic if, given G(0)

the initial configuration, each network G(n) in the sequence
given by the iteration of the min-max algorithm is monotonic
at step n.

For networks that are always monotonic, convergence is
indeed automatic:

Theorem 1: An always monotonic network converges in a
number of steps proportional to ε−1.

Proof: By the definition of monotonic networks, either
the sum of the measured traffic increases at every step by
εCmin, or the network given by the reference demands sup-
ports the true demands and Proposition 3 applies. The iteration
cannot take more than 	(

∑
dij)/εCmin
 steps.

Unfortunately, not all networks are necessarily monotonic,
as the example illustrated in Figure 2 and defined in Table I
indicates. This example has three demands and two bottleneck
links.4 Assume routing tables based on the reference flow
indicated in Table I, 80 from each of A and B and 10 from
C. This flow adds up to flow of 90 through each bottleneck
link. Thus the network supports the reference flow with margin
10%. After applying the true demands to these routing tables,
the unrestricted flow through each bottleneck link is 130(=
80 + 50). This unrestricted flow exceeds the capacity of each
of the bottleneck links. A measured flow of 50 from each
source, though not necessarily “fair”, satisfies each of the three
Assumptions 1-3. In that case, the total measured traffic is less
than the total reference flow (50 + 50 + 50 < 80 + 80 + 10).
See Table I.

Because the measured traffic in this example is smaller
than the reference flow, and because in our formulation the
reference flow is based on the measured traffic at the previous

3In the results that follow, Cmin will be bounded by the minimum capacity
of any link in G.

4The network includes an additional path from C to Z, not shown in the
Figure, of large capacity and with a routing table entry at C of zero. This
augmented network supports the true demands with margin 10%. We omit
this link from the diagram for simplicity; the analysis is unaffected.
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Z

c = 100

c = 100

Fig. 2. An example of a non-monotonic network. The true demand, reference
flow, and measured traffic for this three-commodity network are listed at
Table I. The bottleneck links are indicated in heavy type. The reference flow
has maximum utilization of 90%. The measured traffic has two bottleneck
links. The network includes an additional path from C to Z, of large capacity
and with φ = 0, that is not shown in the Figure. The example illustrates a
situation where the aggregate measured flow can be less than the reference
flow on which the routing tables are based.

TABLE I

WORKLOAD FOR THE NON-MONOTONIC EXAMPLE OF FIGURE 2.

True Reference Measured
Demand Demand Flow Traffic
A → X 80 80 50
B → Y 80 80 50
C → Z 50 10 50

step, this example demonstrates that total measured traffic
can decrease from one step of the min-max algorithm to the
next. Thus an adaptive routing scheme based on a min-max
algorithm is not necessarily monotonic.

F. Bottleneck-weighted total traffic

In the example of Figure 2, the 50 units of traffic from
C contributes to two bottlenecks. In that case, adding up
the total traffic does not necessarily result in a quantity that
monotonically increases from step to step. However, if we
keep track of the number of bottleneck links that each path
traverses, we can indeed prove a related monotonicity property.

We introduce the following additional definitions and nota-
tion. Let B denote the set of bottleneck edges.

Definition 6: The bottleneck-weighted measured flow fb(P )
is the measured flow fm(P ) multiplied by the number of
bottleneck links in P :

fb(P ) = fm(P ) · |{e : e ∈ P, e ∈ B}|

Definition 7: The bottleneck-weighted measured increment
fi(P ) is the difference between the measured flow fm(P )
and the reference flow fr(P ), multiplied by the number of



bottleneck links in P (determined by the measured flow):

fi(P ) = (fm(P ) − fr(P )) · |{e : e ∈ P, e ∈ B}|

Definition 8: The bottleneck-weighted total measured traf-
fic is the sum of all bottleneck-weighted measured flows:

fb =
∑

P

fb(P )

Definition 9: The bottleneck-weighted total measured in-
crement is the sum of all bottleneck-weighted measured in-
crements:

fi =
∑

P

fi(P )

Our principal result in this section is the following:
Theorem 2: The bottleneck-weighted total measured incre-

ment is at least equal to the product of ε and the sum C of
the capacities of all bottleneck edges. In particular, if there
is at least one bottleneck edge, the bottleneck-weighted total
measured increment is strictly positive.5

Remark. Since on any given path the measured flow may
in fact decrease compared to the reference flow (as in the
example in Figure 2), the bottleneck-weighted total increment
is in general a sum of positive and negative terms. However,
according to the theorem, the total is always positive.

Proof: The bottleneck-weighted total measured traffic,
by definition, is the sum of all bottleneck-weighted mea-
sured flows. This is the sum of all measured flows on all
paths containing bottleneck edges, weighted by the number
of bottleneck edges, i.e., counting each bottleneck edge in
the path separately. Conversely, every capacitated edge in
the network is a bottleneck edge for every flow through it.
Thus the bottleneck-weighted total measured traffic is simply
the sum of flows through each bottleneck edge e, which
because capacitated is

∑
e:e∈B c(e). Since the reference flow

was computed by min-max, the network supports the reference
flow with margin ε (Proposition 2). Thus the correspond-
ing bottleneck-weighted total traffic of the reference flow,
weighted according to the same bottleneck links, is bounded
above by

∑
e:e∈B(1− ε)c(e) = (1− ε)C. Thus the bottleneck-

weighted total measured increment is at least εC.
The importance of this result can be seen in its corollaries.

First, we note that, while it is not always true (as shown
by the Example in Figure 2) that the aggregate measured
traffic increases from step to step, at least one point-to-point
measured traffic amount mij must increase.

Corollary 1: At least one measured demand m(n)
ij exceeds

its corresponding reference demand r(n)
ij by εC/n3, where C is

the sum of the capacities of all bottleneck edges, and n = |V |
is the number of nodes.

Proof: The bottleneck-weighted total increment is made
up of terms (mij − rij), each weighted by a number of
bottleneck links between 1 and n. The largest of these terms

5If there are no bottleneck edges in the measured traffic, by Assumption 3
the measured traffic represents the true demand, and the min-max algorithm
converges immediately.

must be at least as large as the average, which is εC/n2. The
weighting factor cannot exceed n; dividing the average by n
gives a lower bound on the largest value for (mij − rij).

This fact has an important consequence:
Corollary 2: There is no stable state other than the optimal

routing.
Proof: Any stable state for which the measured traffic

has no congestion is optimal, by Proposition 3. Any stable
state for which there is congestion must have m(n+1)

ij = m
(n)
ij

for some n and for all i, j; but r(n+1)
ij = m

(n)
ij by construction,

and by the above corollary the measured traffic must increase
for at least one i, j.

This result also offers us an easy convergence proof for a
plausible (though impractical) modified min-max algorithm.
Suppose we apply min-max not to measured traffic r(n+1)

ij =
m

(n)
ij but instead to the greater of measured traffic and refer-

ence demand,

r
(n+1)
ij = max(r(n)

ij ,m
(n)
ij ).

Note that since both the reference and measured demands
are never larger than the true demands, the reference demand
can be feasibly routed. As applied to this modified algorithm,
Corollary 1 now implies that the total of reference demands
increases at every step by at least εC/n3. Since C is bounded
below by the minimum capacity edge in G, the modified
scheme converges. However, this modified min-max algorithm
is not likely to be a practical algorithm for Internet routing. If
traffic demands change substantially, the input will erroneously
reflect some mixture of new and old demands. Even if the
traffic pattern itself is stationary, over time the effect of
stochastic fluctuations would cause considerable distortion in
the reference demands as compared to measured traffic.

Another consequence of Theorem 2 is convergence in the
case where traffic encounters at most one bottleneck link. This
third corollary arguably covers all but the most extreme cases
of network congestion. Recall that a link is a bottleneck if
and only if it is fully utilized throughout the entire measure-
ment interval; with the exception of access links, most large
networks are provisioned so that complete link congestion is
normally both infrequent and temporary.

Corollary 3: If in the sequence of networks G(n) each path
of the measured flow fm(P ) never encounters more than one
bottleneck link, then the min-max algorithm converges.

Proof: We show that the total measured flow increases
from step to step. Under the hypothesis, all weights on bottle-
neck paths are one. We break down the total measured flow
into paths that encounter bottlenecks and paths that do not.
For the flows that do not encounter bottlenecks, Assumptions
2 and 3 imply that the measured flow cannot decrease. For
the flows that do encounter bottlenecks, Theorem 2 implies
the measured flow must actually increase in aggregate by the
bottleneck-weighted total measured increment.

We reduce the above description to symbols. Denote by B
the set of paths containing a (unique) bottleneck edge. First,
measured traffic can be decomposed into traffic that traverses



bottleneck links and traffic that does not:
∑

i,j

m
(n+1)
ij =

∑

P :P∈B
f (n+1)

m (P ) +
∑

P :P /∈B

f (n+1)
m (P )

Next, on uncongested paths, the measured traffic is the unre-
stricted flow (Assumption 3), which in turn is at least as large
as the reference flow (Assumption 2):

∑

P :P /∈B

f (n+1)
m (P ) =

∑

P :P /∈B

f (n+1)
u (P ) ≥

∑

P :P /∈B

f (n+1)
r (P )

The measured flow through bottleneck links is, in aggregate,
greater by at least (1 − ε)C than the reference flow through
those links (Theorem 2):

∑

P :P∈B
f (n+1)

m (P ) ≥ (1 − ε)C +
∑

P :P∈B
f (n+1)

r (P )

The sum of all reference flows at step n+ 1 is the reference
demand, which (by construction) is the same as the measured
demand in step n:

∑

P :P∈B
f (n+1)

r (P ) +
∑

P :P /∈B

f (n+1)
r (P ) =

∑

ij

r
(n+1)
ij =

∑

ij

m
(n)
ij

Combining these equations, we have:
∑

i,j

m
(n+1)
ij ≥ (1 − ε)C +

∑

ij

m
(n)
ij (3)

Of course, if the first sum is empty, i.e., there are no bottleneck
edges, then Proposition 3 applies.

We expect that this “single-bottleneck” assumption covers a
large number of cases in practice. However, we would like to
show convergence regardless of workload; as the next example
shows, we are unable to do so without making additional
assumptions about how resources are allocated among flows
when there is congestion.

G. Limits of the min-max property

The above discussion applies to any adaptive routing algo-
rithm that provides a guaranteed worst-case link utilization,
regardless of how the particular mechanics of congestion
control allocate bandwidth on bottleneck links, except as noted
in the broad assumptions in subsection III-C. It is natural
to ask whether the min-max property is enough by itself to
demonstrate convergence, that is, whether Corollary 3 can be
extended to all configurations.

We present a counterexample that answers this question
in the negative. In this example, we construct a pair of
configurations that form a “two-cycle”, one for which a
particularly clumsy min-max algorithm, and a particularly
perverse bandwidth allocation, combine to cause the system
to alternate between suboptimal configurations.

Consider four demands A → X,B → Y,C → Z,D →
T , and two bottleneck links L1, L2 each with capacity 100.
The capacities of all other links are sufficiently large not to
encounter congestion. Each demand has two alternate routing

paths to its corresponding destination, as listed in Table III. In
each case, one of those paths passes through both bottleneck
links, and the other passes through only one bottleneck link.
Specifically, for A → X and C → Z, the one-bottleneck-link
paths go through link L1 only, while for B → Y and D → T ,
the one-bottleneck-link paths go through link L2 only.

The values for true, reference, and measured traffic used
in the example are as listed in Table II. If each demand is
routed along its single-bottleneck-link path, the entire set of
demands can be routed with 90% utilization. In the initial
configuration, however, only A and B are routed along their
one-bottleneck-link paths, while C and D are routed through
their two-bottleneck-link paths. The utilization according to
the reference flow is 65%.6 Upon application of the true
demands to this initial configuration, congestion appears at
both links. Suppose, perversely7, that the congestion control
mechanism resolves this congestion as follows: each of the
demands A and B is accepted through the network in the
restricted amounts of 10 units each, while each of C and D
is accepted in the full amount of 45 units each. (Note that
TCP congestion control in the presence of FIFO queues can
yield just this kind of pathological allocation [24].) In this
case, each link L1 and L2 experiences full utilization, i.e.,
100 units. The min-max algorithm observes measured traffic
of A = 10, B = 10, C = 45,D = 45.

Now suppose, again perversely, that at the next step min-
max routes this observed traffic to meet a utilization guarantee
of 65%, by routing A and B along their two-link paths,
and C and D along their one-link paths. This could still
preserve the min-max property if, for example, some other
link in the network is at least 65% utilized. When the true
demands are applied to this routing, each link L1 and L2
again experiences congestion. To resolve this congestion,
suppose, again perversely, that this time the congestion control
mechanism admits A and B in the full amount of 45 units
each, but C,D only in the restricted amount of 10 units
each. In this case the min-max algorithm observes traffic of
A = 45, B = 45, C = 10,D = 10. Now suppose the min-
max algorithm computes a routing for this measured traffic
by assigning A and B to one-link paths and C,D to two-link
paths. This routing again achieves a utilization guarantee of
65% for this second set of observed traffic.

Because the configuration resulting from the second ap-
plication of the min-max algorithm is identical to the initial
configuration, the cycle can repeat indefinitely. Both config-
urations are evidently suboptimal with respect to true traffic,
since all of the true traffic can be routed within 90% utilization,
while the actual configurations experience congestion at every
step. Note that this example does not contradict Theorem 2, as
the bottleneck-weighted total measured increment is positive
at each step relative to the previous reference demand, when
weighted according to the new measured bottlenecks.

One potential solution to this problem would be to restrict

6These specific values assigned are essentially unimportant to the outcome.
7But consistent with Assumptions 1-3.



TABLE II

A COUNTEREXAMPLE TO CONVERGENCE: DEMANDS.

Demand True Ref-1 Meas-1 Ref-2 Meas-2
A → X 45 45 10 10 45
B → Y 45 45 10 10 45
C → Z 45 10 45 45 10
D → T 45 10 45 45 10

TABLE III

A COUNTEREXAMPLE TO CONVERGENCE: ROUTING PATHS.

Demand Path 1 Path 2
A → X L1, L2 L1
B → Y L1, L2 L2
C → Z L1, L2 L1
D → T L1, L2 L2

the class of adaptive routing algorithms further, to “cascading”
min-max: after solving for a minimum worst-case utilization,
identify the bottleneck link with the greatest utilization, and
form a residual network by eliminating all traffic through that
link. Then recursively repeat the algorithm on the residual.
This approach addresses the above counterexample by requir-
ing the minimal use of L1, L2. It is an open question whether
the “cascading” approach can be refined to a polynomial-time
algorithm (taking into account the systematic evaluation of
ties), as well as whether such a modification would lead to a
complete proof of convergence for all workloads.

H. Convergence for a particular congestion control model

Without stronger assumptions about the behavior of the
system under congestion, we cannot infer anything about
traffic demands not actually observed. As a result, we cannot
prove convergence in all cases. In this subsection, we develop
a model for deterministically resolving congestion, which we
believe to be simple and plausible. Under this model, the min-
max algorithm converges in all cases.

Inspired by recent results on TCP behavior [23], we posit a
“proportional bandwidth sharing” model for deterministically
resolving congestion on bottleneck links. Specifically, in order
to determine the measured traffic for a given reference flow,
we first compute the unrestricted flow. Then we identify the
most overcapacitated edge, that is, the edge with the largest
ratio of utilization to capacity. (If that ratio is less than one,
we admit the entire unrestricted flow, and we are done.)
For each path through that edge, we scale the amount of
flow along that path by the ratio of utilization to capacity,
with the result that the scaled flows add precisely to full
utilization. Next, fixing all scaled flows, we repeat the process
for all remaining flows: identify the most overcapacitated edge;
scale all hitherto unscaled flows by that ratio (calculated with
respect to the residual capacity); and repeat until no edge
is overcapacitated. Continuing in this way, all flows receive
at least their proportionate share of bandwidth on the most
congested link.

Under this deterministic model, any min-max algorithm
converges. In the remainder of this subsection, we demonstrate
this claim. We begin with an important observation about this
congestion model.

Proposition 4: Under the above model of congestion con-
trol mechanics, let R > 1 be the worst case utilization
percentage for the unrestricted flow. Then at least 1/R of each
demand is routed.

Proof: In the first step in the construction of proportional
bandwidth sharing described above, the worst-case scaling
ratio R is identified, and the path flows routed through that
bottleneck link are scaled by a percentage 1/R. Now consider
the second step, where a link with worst-case utilization
ratio is identified, after fixing all the path flows routed in
the first step (the residual utilization ratio). The worst-case
utilization ratio so identified is no greater than R. Otherwise,
the unrestricted utilization ratio (determined by adding back
in the fixed flows, increased by the percentage R) would be
greater than R, which contradicts the choice of the first link.
Thus the scaling ratio for path flows scaled in the second step
is no less than 1/R. By an easy induction argument, the same
result holds for all subsequent links.

Based on this observation, the stability proof is straightfor-
ward.

Proposition 5: Under the above model of congestion con-
trol mechanics, the min-max algorithm converges in a number
of steps k = O(1/ log(1 − ε)).

Proof: Suppose R is the worst-case ratio of the unre-
stricted flow for the initial conditions. By Proposition 4, the
measured flow along every path is at least the ratio 1/R of
the unrestricted flow. Hence, the sum of measured flows for
any source-destination pair is at least the ratio 1/R of true
demand. Apply min-max to the measured flow. The result,
used as the reference flow in the subsequent step, is routed
within headroom of ε (see Proposition 2). The unrestricted
flow along each path is determined from the reference flow by
multiplying by the ratio of true to reference demand, which
ratio is no more than R. Then the total unrestricted flow
through any link is never more than R · (1 − ε) times its
capacity. But in that case the maximum ratio of unrestricted
flow to link capacity cannot exceed R · (1 − ε). Thus when
the bandwidth sharing model is applied at the second step
of min-max, the worst-case unrestricted link utilization has
been reduced to R · (1 − ε). At each step the worst-case link
utilization is reduced by a factor of (1−ε). When inevitably the
worst-case ratio is reduced to less than one, the convergence is
immediate from Proposition 3. The convergence rate is given
by (1 − ε)k < 1/R, or k ∼ 1/ log(1 − ε), a number of
steps approximately inversely proportional to the guaranteed
headroom.

I. Congested networks

In the preceding discussion, we assumed throughout that the
network itself was not overloaded, i.e., that the true demands
could be routed with margin ε for some ε > 0. In this
subsection, we investigate convergence and optimality where
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Fig. 3. An example of suboptimal convergence in a congested network.
The true demands, reference, and measured traffic are listed in Table IV. If
the bandwidth-sharing mechanism offers precedence to traffic A → X and
B → Y , then with the routing φ as indicated, no additional traffic from
C → Z can be supported. If the routing is changed so that φ is reversed
(0 ↔ 1), then the additional traffic can be supported. But the measured
traffic at X and Y considered alone gives no indication of which of these
two routings is preferred.

TABLE IV

SUBOPTIMAL CONVERGENCE IN A CONGESTED NETWORK.

True Reference Measured
Demand Demand Flow Traffic
A → X 100 100 100
B → Y 100 100 100
C → Z ?? ?? ??

this fundamental assumption is removed. Of course, this is an
extreme case; most networks are provisioned with sufficient
capacity that links are not persistently and unavoidably over-
committed for extensive periods of time.

Suppose now that the optimal network Gopt can route the
true demands dij , but not within ε > 0 for any ε. Under our
weak Assumptions 1-3, allowing arbitrary congestion control
response to bottleneck links, one can construct straightforward,
albeit contrived, examples for which min-max stabilizes on
a suboptimal routing. Consider the network illustrated in
Figure 3 and Table IV. In this case the two listed demands
A → X and B → Y cannot be routed to their destinations
without causing congestion on links (1) and (2) (denoted by
heavy lines). If the listed routing is the initial routing, and if
congestion control will operate on bottleneck links always to
give preference to A → X and B → Y over other demands,
then any “true” traffic originating at C or C ′ will never emerge
from the network. On the other hand, if the routing originating
at A and B is reversed, then the additional “true” traffic can
be routed.

Admittedly, this example applies a particular congestion
control mechanism to bandwidth allocation on bottleneck
links (essentially, giving complete priority to A and B). It is

A B C

Z
YX

Fig. 4. An example of routing non-determinacy. The true demand, reference
flow, and measured traffic for this three-commodity network are listed at
Table V. The four links in the center of the network are the only potential
sources of congestion. An optimal routing algorithm may assign each flow
entirely to the left path, entirely to the right, or split between left and right,
as long as the equality of traffic on the bottleneck is preserved.

TABLE V

ASSUMPTIONS FOR A NETWORK ILLUSTRATING DEGENERACY. SEE

FIGURE 4.

Commodity True Reference Measured
A → B 50 50 50
B → Y 50 50 50
C → Z 50 50 50

not difficult, however, to construct corresponding “diabolical”
examples for other methods of bandwidth allocation. It is
an open question whether some suitably refined min-max
algorithm could be devised that would provide more flexible
routing and convergence in the case of heavy congestion.

For example, one could modify min-max routing to spread
traffic among links once extreme congestion is encountered.
In similar circumstances, load-balancing methods that provide
automatic splitting of traffic have been recommended [7],
[22]. Specifically, one could modify the min-max algorithm to
provide that where the calculation of the reference flow results
in fully capacitated paths (thus indicating that optimal routing
will also result in fully capacitated paths), traffic should be
applied to uncapacitated paths in preference to shorter, fully
capacitated paths. It is an open question whether desired
convergence and fairness properties can be shown to hold
under these conditions.

IV. ROUTE DETERMINISM

In order to address the issue of “route oscillation” in min-
max adaptive routing systems it is necessary first to identify
the circumstances under which a min-max routing is uniquely
determined. Consider the example in Figure 4. In this example,
there are an infinite number of equally optimal assignments



of traffic to routes; however, linear solvers are not in general
guaranteed to reach the same solution given nearly identical
inputs, opening the potential for meaningless route oscillation.
The example is equally valid if the amounts of flow to be
routed are slightly different, or if the bottleneck is in some
other part of the network, or even if a secondary optimization
step is used to select for shortest paths [19]. The solution,
however, is straightforward: introduce systematic tie-breaking
considerations to the algorithm. For example, hysteresis could
be added to the optimization criteria, to favor (with some
very small positive weight compared to the min-max value)
solutions that preserve the same routing as had been chosen
in the previous step. Alternatively, the weights of links on
the edge of the network in Figure 4 could be systematically
and randomly perturbed by small amounts. We leave to
future consideration the development and analysis of detailed
methods aimed at reducing route oscillation in the presence of
stochastic variations in traffic load.

V. CONCLUSION

Questions surrounding the stability of adaptive routing sys-
tems have long stymied efforts to introduce adaptive routing
to the Internet. In this paper, we have addressed the sub-
problem of whether adaptive routing can be designed to be
stable in the presence of congestion control. We answer this
question in the affirmative, showing that rapid convergence,
stability, and optimality can be achieved for general network
topologies and workloads, if the workload can be feasibly
routed with some headroom, the adaptive routing algorithm
minimizes the maximum link utilization, and the congestion
control algorithm allocates bandwidth fairly among competing
users. We further show by counterexample that some adaptive
routing algorithms that preserve the min-max property do not
converge to an optimal solution when combined with less
well-behaved congestion control algorithms. The conclusions
of this paper, when combined with recent advances in traffic
measurement technology, hopefully will serve to reinvigorate
the search for effective solutions to Internet bottlenecks using
adaptive routing.
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